ComfyUI Node: NNT Training Hyperparameters

Authored by inventorado

Created

Updated

61 stars

Category

NNT Neural Network Toolkit/Models

Inputs

experiment_name STRING
batch_size INT
epochs INT
optimizer
  • Adadelta
  • Adagrad
  • Adam
  • AdamW
  • SparseAdam
  • Adamax
  • ASGD
  • NAdam
  • RAdam
  • RMSprop
  • Rprop
  • SGD
learning_rate FLOAT
weight_decay FLOAT
momentum FLOAT
loss_function
  • L1Loss
  • MSELoss
  • CrossEntropyLoss
  • CTCLoss
  • NLLLoss
  • PoissonNLLLoss
  • GaussianNLLLoss
  • KLDivLoss
  • BCELoss
  • BCEWithLogitsLoss
  • MarginRankingLoss
  • HingeEmbeddingLoss
  • MultiLabelMarginLoss
  • HuberLoss
  • SmoothL1Loss
  • SoftMarginLoss
  • MultiLabelSoftMarginLoss
  • CosineEmbeddingLoss
  • MultiMarginLoss
  • TripletMarginLoss
  • TripletMarginWithDistanceLoss
reduction
  • mean
  • sum
  • none
weight_enabled
  • True
  • False
class_weights STRING
margin FLOAT
use_lr_scheduler
  • True
  • False
scheduler_type
  • StepLR
  • ReduceLROnPlateau
  • CosineAnnealingLR
scheduler_step_size INT
scheduler_gamma FLOAT
min_lr FLOAT
use_early_stopping
  • True
  • False
patience INT
min_delta FLOAT

Outputs

DICT

STRING

Extension: ComfyUI Neural Network Toolkit NNT

Neural Network Toolkit (NNT) for ComfyUI is an extensive set of custom ComfyUI nodes for designing, training, and fine-tuning neural networks. This toolkit allows defining models, layers, training workflows, transformers, and tensor operations in a visual manner using nodes.

Authored by inventorado

Run ComfyUI workflows in the Cloud!

No downloads or installs are required. Pay only for active GPU usage, not idle time. No complex setups and dependency issues

Learn more