ComfyUI Extension: ComfyUI_FlashVSR

Authored by smthemex

Created

Updated

152 stars

FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution,this node ,you can use it in comfyUI

Custom Nodes (0)

    README

    ComfyUI_FlashVSR

    FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution,this node ,you can use it in comfyUI

    Upadte

    • update to version v1.1 /更新适配1.1版本的新模型和代码,降低闪烁,提高保真度和稳定性
    • add full mode lightx2v vae encoder support(only lightvaew2_1.pth,taew2_1.pth,lighttaew2_1.pth) and Wan2.1-VAE-upscale2x support
    • 新增lightx2v 加速vae decoder支持和Wan2.1-VAE-upscale2x 放大decoder支持,只是在full 模式下有效,light的加速模型目前只支持(lightvaew2_1.pth #32.2M,taew2_1.pth,lighttaew2_1.pth) 三个文件

    Tips

    • 满足部分网友需要超分单张图片的奇怪要求,默认输出25帧1秒的视频,详见示例,Block-Sparse-Attention 目前不支持5090的sm120架构,需要改一下Block-Sparse-Attention的源码来支持;

    • 同步tiny的专属long模式

    • 新增切片视频路径加载节点,输入保存切片视频的路径,开启自动推理,即可推理完路径所有视频;

    • 修复输入图像归一化处理错误导致无法复现官方的问题,分离decoder,新增关键点模型卸载和OOM处理,包括处理超长视频向量的OOM,同步官方local range的修改,新增小波模式下的加减帧处理(项目一作大佬提的);

    • local_range=7这个是会最清晰,local_range=11会比较稳定,color fix 推荐用小波(没重影);

    • 编译Block-Sparse-Attention window的轮子 可以使用 smthemex 强制编译版 或者 lihaoyun6 要联网 两个fork来,不推荐用官方的

    • Block-Sparse-Attention 正确安装且能调用才是方法的完全体,当前的函数实现会更容易OOM,但是Block-Sparse-Attention轮子实在不好找,目前只有CU128 toch2.7的,我提供的(cu128,torch2.8,py311单体)或者自己编译

    • 方法是基于现有prompt.pt训练的,新增tile 和 color fix 选项,tile关闭质量更高,需要VRam更高,corlor fix对于非模糊图片可以试试。修复图片索引数不足的错误。

    • Choice vae infer full mode ,encoder infer tiny mode 选择vae跑full模式 效果最好,tiny则是速度,数据集基于4倍训练,所以1 scale是不推荐的;

    • 如果觉得项目有用,请给官方项目FlashVSR 打星; if you Like it , star the official project link

    1.Installation

    In the ./ComfyUI/custom_nodes directory, run the following:

    git clone https://github.com/smthemex/ComfyUI_FlashVSR
    
    

    2.requirements

    pip install -r requirements.txt
    

    要复现官方效果,必须安装Block-Sparse-Attention torch2.8 cu2.8 py311 wheel or CU128 toch2.7

    git clone https://github.com/mit-han-lab/Block-Sparse-Attention 
    # git clone https://github.com/smthemex/Block-Sparse-Attention # 无须梯子强制编译
    # git clone https://github.com/lihaoyun6/Block-Sparse-Attention # 须梯子
    cd Block-Sparse-Attention
    pip install packaging
    pip install ninja
    python setup.py install
    

    3.checkpoints

    ├── ComfyUI/models/FlashVSR
    |     ├── LQ_proj_in.ckpt # v1.1 or v1.0
    |     ├── TCDecoder.ckpt
    |     ├── diffusion_pytorch_model_streaming_dmd.safetensors #v1.1 or v1.0
    |     ├── posi_prompt.pth
    ├── ComfyUI/models/vae
    |        ├──Wan2.1_VAE.pth
    |        ├──lightvaew2_1.pth  #32.2M  or taew2_1.pth,lighttaew2_1.pth
    |        ├──Wan2.1_VAE_upscale2x_imageonly_real_v1_diff.safetensors  # rename from diffusion_pytorch_model.safetensors
    

    Example

    • upscale2x and ligth lightvaew2_1.pth
    • single image VSR
    • full old node
    • tiny new
    • video files loop

    Acknowledgements

    DiffSynth Studio
    Block-Sparse-Attention
    taehv

    Citation

    @misc{zhuang2025flashvsrrealtimediffusionbasedstreaming,
          title={FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution}, 
          author={Junhao Zhuang and Shi Guo and Xin Cai and Xiaohui Li and Yihao Liu and Chun Yuan and Tianfan Xue},
          year={2025},
          eprint={2510.12747},
          archivePrefix={arXiv},
          primaryClass={cs.CV},
          url={https://arxiv.org/abs/2510.12747}, 
    }
    
    

    lightx2v

    @misc{lightx2v,
     author = {LightX2V Contributors},
     title = {LightX2V: Light Video Generation Inference Framework},
     year = {2025},
     publisher = {GitHub},
     journal = {GitHub repository},
     howpublished = {\url{https://github.com/ModelTC/lightx2v}},
    }