ComfyUI Extension: ComfyUI-PainterLongVideo
Powerful node for generating long-form videos with consistent motion, global scene coherence, and slow-motion correction in Wan 2.2-based workflows.
Custom Nodes (0)
README
PainterLongVideo Node for ComfyUI
ComfyUI 的 PainterLongVideo 节点
A powerful node for generating long-form videos with consistent motion, global scene coherence, and slow-motion correction in Wan 2.2-based workflows.
一个强大的节点,用于在基于 Wan 2.2 的工作流中生成长视频,具备运动一致性、全局场景连贯性以及慢动作修复功能。
✨ Features / 功能亮点
-
Long Video Continuation: Seamlessly continues from the last frame of a previous video segment.
长视频接续:无缝接续上一段视频的最后一帧。 -
Slow-Motion Fix: Built-in
motion_amplitudecontrol to enhance motion intensity and fix sluggish movement in 4-step LoRAs (e.g., lightx2v).
慢动作修复:内置motion_amplitude参数,增强运动幅度,修复 4 步 LoRA(如 lightx2v)中的迟缓问题。 -
Global Consistency Anchor: Optional
initial_reference_imageinput allows the model to remember the original character/scene layout from the first segment, preventing drift when the camera returns.
全局一致性锚定:可选的initial_reference_image输入,让模型记住第一段的初始人物与场景布局,防止镜头回溯时内容漂移。 -
Compact UI: Clean, official-style node size with short name
PainterLongVideo.
紧凑界面:简洁、官方风格的节点尺寸,名称简短为PainterLongVideo。
📥 Installation / 安装方法
-
Place this folder into your ComfyUI custom nodes directory:
将本文件夹放入 ComfyUI 的自定义节点目录中: -
Ensure you have the required dependencies (usually included with standard ComfyUI):
确保已安装所需依赖(通常随标准 ComfyUI 自带):
torchcomfyui(latest)
- Restart ComfyUI. The node will appear under
video/paintercategory.
重启 ComfyUI。该节点将出现在video/painter分类下。
⚙️ Inputs / 输入参数
| Input | Type | Description |
|------|------|-------------|
| positive | CONDITIONING | Positive prompt conditioning. |
| negative | CONDITIONING | Negative prompt conditioning. |
| vae | VAE | VAE model for latent encoding/decoding. |
| width | INT | Output width (multiple of 16). Default: 832. |
| height | INT | Output height (multiple of 16). Default: 480. |
| length | INT | Number of output frames. Default: 81. |
| batch_size | INT | Batch size for generation. Default: 1. |
| previous_video | IMAGE | The full output video from the previous segment (used for continuity). |
| motion_frames | INT | Number of trailing frames from previous_video used as motion reference. Default: 5. |
| motion_amplitude | FLOAT | Motion intensity multiplier (1.0 = normal, 1.15 = recommended). Range: 1.0–2.0. |
| initial_reference_image (optional) | IMAGE | The first frame of the very first video segment. Helps maintain global consistency across segments. |
| clip_vision_output (optional) | CLIP_VISION_OUTPUT | Optional CLIP vision embedding for image-guided generation. |
| 输入 | 类型 | 说明 |
|------|------|------|
| positive | CONDITIONING | 正向提示词条件。 |
| negative | CONDITIONING | 负向提示词条件。 |
| vae | VAE | 用于 latent 编解码的 VAE 模型。 |
| width | INT | 输出宽度(需为 16 的倍数)。默认:832。 |
| height | INT | 输出高度(需为 16 的倍数)。默认:480。 |
| length | INT | 输出帧数。默认:81。 |
| batch_size | INT | 生成批次大小。默认:1。 |
| previous_video | IMAGE | 上一段视频的完整输出(用于连续性)。 |
| motion_frames | INT | 从 previous_video 末尾提取的参考帧数量。默认:5。 |
| motion_amplitude | FLOAT | 运动强度倍率(1.0=正常,1.15=推荐)。范围:1.0–2.0。 |
| initial_reference_image (可选) | IMAGE | 整个视频序列的第一帧。用于跨段落保持全局一致性。 |
| clip_vision_output (可选) | CLIP_VISION_OUTPUT | 可选的 CLIP 视觉嵌入,用于图像引导生成。 |
💡 Usage Tips / 使用建议
-
For best results, always provide the first frame of Segment 1 as
initial_reference_imageto all subsequent segments.
为获得最佳效果,请将第一段的第一帧作为initial_reference_image输入到所有后续段落中。 -
Set
motion_amplitude = 1.15as default. Increase to1.2–1.3if motion still feels too slow.
默认设为motion_amplitude = 1.15。若仍觉动作太慢,可增至1.2–1.3。 -
Keep
motion_framessmall (3–7) unless complex motion is needed.
除非需要复杂运镜,否则保持motion_frames较小(3–7)。 -
This node works best with Wan 2.2 + 4-step LoRA pipelines.
本节点最适合搭配 Wan 2.2 + 4 步 LoRA 流程使用。
🧠 How It Works / 工作原理
The node:
- Encodes the last frame of
previous_videoas the starting point. - Constructs a latent sequence with the first frame fixed and others initialized to gray.
- Applies motion enhancement via latent difference scaling (
motion_amplitude). - Injects both last-frame and initial-frame latents into
reference_latentsfor dual-reference guidance.
该节点:
- 将
previous_video的最后一帧编码为起点; - 构建 latent 序列:首帧固定,其余初始化为灰色;
- 通过 latent 差值缩放实现运动增强(
motion_amplitude); - 将结尾帧和起始帧同时注入
reference_latents,实现双重参考引导。
📜 License / 许可证
MIT License – Free to use, modify, and distribute.
MIT 许可证 – 免费使用、修改和分发。