ComfyUI Extension: ComfyUI-NuA-BIRD

Authored by nuanarchy

Created

Updated

9 stars

Custom Nodes (0)

    README

    ComfyUI-NuA-BIRD

    ComfyUI implementation of "Blind Image Restoration via Fast Diffusion Inversion"</br> Original article

    Features

    1. Blind Deblurring
    2. Non-uniform Deblurring
    3. Inpainting
    4. Denoising
    5. Superresolution

    Installation

    1. Clone the repository into the ComfyUI/custom_nodes directory

      cd ComfyUI/custom_nodes
      git clone https://github.com/nuanarchy/ComfyUI-NuA-BIRD.git
      
    2. Install the required modules

      pip install -r ComfyUI-NuA-BIRD/requirements.txt
      
    3. Copy the model weights into the appropriate folder ComfyUI/models/checkpoints

    Examples

    In the examples folder, you will find the workflow diagrams, the JSON file with the configurations, and resulting images.

    Workflow Diagrams

    Blind Deblurring

    <img src="examples/deblurring.png" alt="Blind Deblurring" width=auto height=auto>

    Non-uniform Deblurring

    <img src="examples/deblurring_non_uniform.png" alt="Non-uniform Deblurring" width=auto height=auto>

    Inpainting

    <img src="examples/inpainting.png" alt="Inpainting.png" width=auto height=auto>

    Denoising

    <img src="examples/denoising.png" alt="Denoising" width=auto height=auto>

    Super Resolution

    <img src="examples/super_resolution.png" alt="Super Resolution" width=auto height=auto>

    Important

    The results primarily depend on the pretrained model and the dataset</br> Limitations:

    1. The model only works with square images at a resolution of 256x256 pixels
    2. Faces must be cropped and centered in the images
    3. For Super Resolution tasks, the input image resolution can be any size smaller than 256x256 pixels

    If you want to overcome these limitations, you can train your own diffusion model using custom datasets.</br> You can use the OpenAI repository: improved-diffusion