experimental wanvideo comfyui node with a singular goal - visually seamless transitions between context windows
ComfyUI-WanSeamlessFlow/
├── __init__.py # Registry and imports
├── blending.py # Core embedding interpolation functions
├── nodes.py # ComfyUI node definitions
├── visualization.py # Diagnostic visualization utilities
├── README.md # Documentation and examples
└── utils/ # Support utilities
└── optimization.py # Embedding optimization algorithms
./reference/nodes.py
for current patches made:[Architecture Map]
┌─────────────────────┐ ┌───────────────────────┐ ┌─────────────────────┐
│ WanSeamlessFlow │ ──→ │ Context Window Engine │ ──→ │ Rendering Pipeline │
│ • Embedding Order │ │ • Window Transition │ │ • Composite Output │
│ • Blend Parameters │ │ • Interpolation │ │ • Visual Smoothing │
└─────────────────────┘ └───────────────────────┘ └─────────────────────┘
┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐
│ LoadWanVideo │ │ WanVideoText │ │ WanSmartBlend │ │ WanVideoSampler │
│ T5TextEncoder │───▶│ Encode │───▶│ │───▶│ │
└──────────────────┘ └──────────────────┘ └──────────────────┘ └──────────────────┘
│
▼
┌──────────────────┐
│ WanBlendVisualize│
│ (Optional) │
└──────────────────┘
Multi-Prompt Usage: For optimal results with prompt transitions:
Modify your WanVideoTextEncode to use multiple prompts separated by | characters:
high quality nature video featuring a red panda balancing on a bamboo stem | high quality nature video focusing on the bird perched on the panda's head | high quality nature video showcasing the waterfall in the background
Compatibility Notes: This setup is fully compatible with your existing components:
Parameter Recommendations:
Extended Analysis: This integration creates a multi-dimensional benefits matrix:
⎡ TeaCache Compatibility ⎤ ⎡ High | Compatible with caching mechanisms ⎤
⎢ Context Window Flow ⎥ = ⎢ High | Works with all scheduler types ⎥
⎢ Smooth Transitions ⎥ ⎢ High | Creates gradual prompt blending ⎥
⎢ Performance Impact ⎥ ⎢ Low | Minimal computational overhead ⎥
⎣ Implementation Effort ⎦ ⎣ Low | Non-invasive integration ⎦
Integration point: context window embedding selection logic
WindowProcessingPipeline {
window_context → embedding_selection → model_forward → window_composition
↑ ↑ ↑
| (context info) | (embedding selection) | (output compositing)
↓ ↓ ↓
context_scheduler [INTERVENTION POINT] window_blending
}