Segment and Recognize Anything at Any Granularity.
This is a ComfyUI node based-on Semantic-SAM official implementation. We provide a workflow node for one-click segment. Compared with SAM, Semantic-SAM has better fine-grained capabilities and more candidate masks. Users can take this node as the pre-node for inpainting to obtain the mask region.
This node have been valided on Ubuntu-20.04 & CUDA-11.8. Due to detectron2, this node is currently not supported on Windows (unless the compatibility of Detectron2 on Windows is addressed)
cd ComfyUI/custom
git clone https://github.com/eastoc/ComfyUI_SemanticSAM
cd ComfyUI_SemanticSAM
git clone https://github.com/facebookresearch/detectron2
git clone https://github.com/facebookresearch/Mask2Former
Because detectron2 has not been updated, if the CUDA=11.8, you can
git clone https://github.com/johnnynunez/detectron2
or you can try other 3rd detectron2 implementation.
download Semantic-SAM model to "ComfyUI_SemanticSAM/ckpt"
<table><tbody> <!-- START TABLE --> <!-- TABLE HEADER --> <th valign="bottom">Name</th> <th valign="bottom">Training Dataset</th> <th valign="bottom">Backbone</th> <th valign="bottom">1-IoU@Multi-Granularity</th> <th valign="bottom">1-IoU@COCO(Max|Oracle)</th> <th valign="bottom">download</th> <tr><td align="left">Semantic-SAM | <a href="configs/semantic_sam_only_sa-1b_swinT.yaml">config</a></td> <td align="center">SA-1B</td> <td align="center">SwinT</td> <td align="center">88.1</td> <td align="center">54.5|73.8</td> <td align="center"><a href="https://github.com/UX-Decoder/Semantic-SAM/releases/download/checkpoint/swint_only_sam_many2many.pth">model</a></td> <tr><td align="left">Semantic-SAM | <a href="configs/semantic_sam_only_sa-1b_swinL.yaml">config</a></td> <td align="center">SA-1B</td> <td align="center">SwinL</td> <td align="center">89.0</td> <td align="center">55.1|74.1</td> <td align="center"><a href="https://github.com/UX-Decoder/Semantic-SAM/releases/download/checkpoint/swinl_only_sam_many2many.pth">model</a></td> </tbody></table>Install PyTorch & torchvision through the official method. We have been valid that from pytorch 1.13.0 to 2.3.0.
Install Semantic-SAM dependencies
pip install -r requirements.txt
Install detectron2
cd detectron2
pip install -e .
cd ..
Install Mask2Former
cd Mask2Former/mask2former/modeling/pixel_decoder/ops
sh make.sh
one-click segment workflow is in "./workflow/workflow.json"