ComfyUI Extension: SaveAsScript

Authored by atmaranto

Created

Updated

148 stars

A version of ComfyUI-to-Python-Extension that works as a custom node. Adds a button in the UI that saves the current workflow as a Python file, a CLI for converting workflows, and slightly better custom node support.

Custom Nodes (0)

    README

    ComfyUI-SaveAsScript

    ComfyUI-SaveAsScript (or SaS) is a fork of ComfyUI-To-Python-Extension. It provides a more robust command-line interface and the ability to export your current workflow as a script directly from a button on the ComfyUI web interface.

    Once exported, this script can be run to run the workflow without a frontend, or it can be imported and the main() function can be used to call the workflow programatically.

    NEW: Now compatible with the recent changes to ComfyUI that combined widgets and inputs. The Save as Script button now also appears on the new UI.

    Feature: Module Support

    Now, scripts exported with SaS can be imported as modules! Once you have a script exported, you can use it like:

    >>> import exported_script
    >>> results = exported_script.main(text5="A prompt that would be sent to the command-line arguments", queue_size=1)
    

    The first SaveImage node reached will instead return the output to the calling function.

    Feature: Custom Output Path

    When running the exported script normally, you can now specify an --output option that will override the default path of SaveImage nodes. If only a single image is exported by the node, then the path will be used verbatim. Otherwise, the path will be used as a prefix, and _#####.png will be appended to ensure uniqueness. Note that files will be clobbered if only one image is exported. If the path is a directory, the SaveImage node's filename_prefix will be used.

    If - is selected as the output path, normal ComfyUI output will be piped to stderr and the resultant image will be piped to stdout, allowing one to use the script like:

    python3 script.py --text5 "A painting of outer space" --output - --queue-size 1 > image.png
    

    Note that this will only work with SaveImage nodes. If you use alternatives, such as the AdvancedSaveImage node, the program will not recognize them.

    Usage (Web)

    Upon installation, there will be a button labeled "Save as Script" on the interface, pictured below:

    A button that exports the current script on the ComfyUI

    Click that button and enter your preferred name for the downloaded script (extension added automatically), and your file will be downloaded.

    Note that if you use the script this way, you do not need to enable developer mode. You will if you use the CLI (to get the API JSON).

    Usage (CLI)

    Navigating to the extension directory, you can also use the basic CLI included in the script to save your script without changing the Python file.

    usage: comfyui_to_python.py [-h] [--output OUTPUT] [--queue-size QUEUE_SIZE] [--yes] workflow
    
    Converts a ComfyUI-style workflow.json file to a Python file. Must have been exported with API calls
    
    positional arguments:
      workflow              The workflow.json file to convert
    
    options:
      -h, --help            show this help message and exit
      --output OUTPUT, -o OUTPUT
                            The output file (defaults to [input file].py)
      --queue-size QUEUE_SIZE, -q QUEUE_SIZE
                            The queue size per run
      --yes, --overwrite, -y
                            Overwrite the output file if it exists
    

    Arguments

    Every single input that takes a simple primitive (float, int, string, etc.) will be added as an optional argument to the resultant script. If any input is not specified, then whatever was present in the workflow widget is taken as the default value. This means if you have a workflow like:

    An altered version of the default ComfyUI workflow

    Then every node's string/number inputs will be available:

    usage: bottle.py [-h] [--ckpt_name1 CKPT_NAME1] [--width2 WIDTH2] [--height3 HEIGHT3] [--batch_size4 BATCH_SIZE4] [--text5 TEXT5]
                     [--text6 TEXT6] [--seed7 SEED7] [--steps8 STEPS8] [--cfg9 CFG9] [--sampler_name10 SAMPLER_NAME10]
                     [--scheduler11 SCHEDULER11] [--denoise12 DENOISE12] [--filename_prefix13 FILENAME_PREFIX13]
                     [--queue-size QUEUE_SIZE] [--comfyui-directory COMFYUI_DIRECTORY] [--output OUTPUT] [--disable-metadata]
    
    A converted ComfyUI workflow. Node inputs listed below. Values passed should be valid JSON (assumes string if not valid JSON).
    
    options:
      -h, --help            show this help message and exit
      --ckpt_name1 CKPT_NAME1
                            Argument 0, input `ckpt_name` for node "Load Checkpoint" id 4 (autogenerated)
      --width2 WIDTH2       Argument 0, input `width` for node "Empty Latent Image" id 5 (autogenerated)
      --height3 HEIGHT3     Argument 1, input `height` for node "Empty Latent Image" id 5 (autogenerated)
      --batch_size4 BATCH_SIZE4
                            Argument 2, input `batch_size` for node "Empty Latent Image" id 5 (autogenerated)
      --text5 TEXT5         Argument 0, input `text` for node "CLIP Text Encode (Positive Prompt)" id 6 (autogenerated)
      --text6 TEXT6         Argument 0, input `text` for node "CLIP Text Encode (Negative Prompt)" id 7 (autogenerated)
      --seed7 SEED7         Argument 1, input `seed` for node "KSampler" id 3 (autogenerated)
      --steps8 STEPS8       Argument 2, input `steps` for node "KSampler" id 3 (autogenerated)
      --cfg9 CFG9           Argument 3, input `cfg` for node "KSampler" id 3 (autogenerated)
      --sampler_name10 SAMPLER_NAME10
                            Argument 4, input `sampler_name` for node "KSampler" id 3 (autogenerated)
      --scheduler11 SCHEDULER11
                            Argument 5, input `scheduler` for node "KSampler" id 3 (autogenerated)
      --denoise12 DENOISE12
                            Argument 9, input `denoise` for node "KSampler" id 3 (autogenerated)
      --filename_prefix13 FILENAME_PREFIX13
                            Argument 1, input `filename_prefix` for node "Save Image" id 9 (autogenerated)
      --queue-size QUEUE_SIZE, -q QUEUE_SIZE
                            How many times the workflow will be executed (default: 1)
      --comfyui-directory COMFYUI_DIRECTORY, -c COMFYUI_DIRECTORY
                            Where to look for ComfyUI (default: current directory)
      --output OUTPUT, -o OUTPUT
                            The location to save the output image. Either a file path, a directory, or - for stdout (default: the
                            ComfyUI output directory)
      --disable-metadata    Disables writing workflow metadata to the outputs
    

    Passing Arguments to ComfyUI

    In case you want to pass anything to the ComfyUI server as an argument, you can use -- to indicate you're done with SaS arguments and are now passing ComfyUI arguments. For instance:

    python3 script.py --text5 "A painting of outer space" --queue-size 1 --out image.png -- --cpu
    

    Other Changes

    Bugfixes

    • Windows paths are now properly escaped.
    • I also fixed what seemed to be a minor bug with exporting certain Crystools nodes, possibly due to their unusual name.

    TODO

    • Improve compatibility with module API

    Old Description of ComfyUI-to-Python-Extension (usage altered)

    The ComfyUI-to-Python-Extension is a powerful tool that translates ComfyUI workflows into executable Python code. Designed to bridge the gap between ComfyUI's visual interface and Python's programming environment, this script facilitates the seamless transition from design to code execution. Whether you're a data scientist, a software developer, or an AI enthusiast, this tool streamlines the process of implementing ComfyUI workflows in Python.

    Convert this:

    SDXL UI Example

    To this:

    import random
    import torch
    import sys
    
    sys.path.append("../")
    from nodes import (
        VAEDecode,
        KSamplerAdvanced,
        EmptyLatentImage,
        SaveImage,
        CheckpointLoaderSimple,
        CLIPTextEncode,
    )
    
    
    def main():
        with torch.inference_mode():
            checkpointloadersimple = CheckpointLoaderSimple()
            checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
                ckpt_name="sd_xl_base_1.0.safetensors"
            )
    
            emptylatentimage = EmptyLatentImage()
            emptylatentimage_5 = emptylatentimage.generate(
                width=1024, height=1024, batch_size=1
            )
    
            cliptextencode = CLIPTextEncode()
            cliptextencode_6 = cliptextencode.encode(
                text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",
                clip=checkpointloadersimple_4[1],
            )
    
            cliptextencode_7 = cliptextencode.encode(
                text="text, watermark", clip=checkpointloadersimple_4[1]
            )
    
            checkpointloadersimple_12 = checkpointloadersimple.load_checkpoint(
                ckpt_name="sd_xl_refiner_1.0.safetensors"
            )
    
            cliptextencode_15 = cliptextencode.encode(
                text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",
                clip=checkpointloadersimple_12[1],
            )
    
            cliptextencode_16 = cliptextencode.encode(
                text="text, watermark", clip=checkpointloadersimple_12[1]
            )
    
            ksampleradvanced = KSamplerAdvanced()
            vaedecode = VAEDecode()
            saveimage = SaveImage()
    
            for q in range(10):
                ksampleradvanced_10 = ksampleradvanced.sample(
                    add_noise="enable",
                    noise_seed=random.randint(1, 2**64),
                    steps=25,
                    cfg=8,
                    sampler_name="euler",
                    scheduler="normal",
                    start_at_step=0,
                    end_at_step=20,
                    return_with_leftover_noise="enable",
                    model=checkpointloadersimple_4[0],
                    positive=cliptextencode_6[0],
                    negative=cliptextencode_7[0],
                    latent_image=emptylatentimage_5[0],
                )
    
                ksampleradvanced_11 = ksampleradvanced.sample(
                    add_noise="disable",
                    noise_seed=random.randint(1, 2**64),
                    steps=25,
                    cfg=8,
                    sampler_name="euler",
                    scheduler="normal",
                    start_at_step=20,
                    end_at_step=10000,
                    return_with_leftover_noise="disable",
                    model=checkpointloadersimple_12[0],
                    positive=cliptextencode_15[0],
                    negative=cliptextencode_16[0],
                    latent_image=ksampleradvanced_10[0],
                )
    
                vaedecode_17 = vaedecode.decode(
                    samples=ksampleradvanced_11[0], vae=checkpointloadersimple_12[2]
                )
    
                saveimage_19 = saveimage.save_images(
                    filename_prefix="ComfyUI", images=vaedecode_17[0]
                )
    
    
    if __name__ == "__main__":
        main()
    

    Potential Use Cases

    • Streamlining the process for creating a lean app or pipeline deployment that uses a ComfyUI workflow
    • Creating programmatic experiments for various prompt/parameter values
    • Creating large queues for image generation (For example, you could adjust the script to generate 1000 images without clicking ctrl+enter 1000 times)
    • Easily expanding or iterating on your architecture in Python once a foundational workflow is in place in the GUI

    V1.0.0 Release Notes

    • Use all the custom nodes!
      • Custom nodes are now supported. If you run into any issues with code execution, first ensure that the each node works as expected in the GUI. If it works in the GUI, but not in the generated script, please submit an issue.

    Usage

    1. Install the custom_node (via git cloning or the Manager)

    2. Click the button in the web UI OR run the CLI

    3. Move the created .py file to your ComfyUI folder

    4. Run the generated script!