ComfyUI Extension: ComfyUI-HunyuanVideo-Avatar
ComfyUI-HunyuanVideo-Avatar is now available in ComfyUI, HunyuanVideo-Avatar is a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos.
Custom Nodes (0)
README
ComfyUI-HunyuanVideo-Avatar
ComfyUI-HunyuanVideo-Avatar is now available in ComfyUI, HunyuanVideo-Avatar is a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos.
Installation
-
Make sure you have ComfyUI installed
-
Clone this repository into your ComfyUI's custom_nodes directory:
cd ComfyUI/custom_nodes
git clone https://github.com/Yuan-ManX/ComfyUI-HunyuanVideo-Avatar.git
- Install dependencies:
cd ComfyUI-HunyuanVideo-Avatar
pip install -r requirements.txt
Installation Guide for Linux
We recommend CUDA versions 12.4 or 11.8 for the manual installation.
Conda's installation instructions are available here.
# Install PyTorch and other dependencies using conda
# For CUDA 11.8
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# For CUDA 12.4
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
# Install pip dependencies
python -m pip install -r requirements.txt
# Install flash attention v2 for acceleration (requires CUDA 11.8 or above)
python -m pip install ninja
python -m pip install git+https://github.com/Dao-AILab/[email protected]
In case of running into float point exception(core dump) on the specific GPU type, you may try the following solutions:
# Option 1: Making sure you have installed CUDA 12.4, CUBLAS>=12.4.5.8, and CUDNN>=9.00 (or simply using our CUDA 12 docker image).
pip install nvidia-cublas-cu12==12.4.5.8
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/
# Option 2: Forcing to explicitly use the CUDA 11.8 compiled version of Pytorch and all the other packages
pip uninstall -r requirements.txt # uninstall all packages
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
pip install ninja
pip install git+https://github.com/Dao-AILab/[email protected]
Additionally, you can also use HunyuanVideo Docker image. Use the following command to pull and run the docker image.
# For CUDA 12.4 (updated to avoid float point exception)
docker pull hunyuanvideo/hunyuanvideo:cuda_12
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_12
pip install gradio==3.39.0 diffusers==0.33.0 transformers==4.41.2
# For CUDA 11.8
docker pull hunyuanvideo/hunyuanvideo:cuda_11
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_11
pip install gradio==3.39.0 diffusers==0.33.0 transformers==4.41.2
Model
Download Pretrained Models
HunyuanVideo-Avatar Pretrained Models
All models are stored in ComfyUI/models/HunyuanVideo-Avatar/weights
by default, and the file structure is as follows
HunyuanVideo-Avatar
├──weights
│ ├──ckpts
│ │ ├──README.md
│ │ ├──hunyuan-video-t2v-720p
│ │ │ ├──transformers
│ │ │ │ ├──mp_rank_00_model_states.pt
│ │ │ │ ├──mp_rank_00_model_states_fp8.pt
│ │ │ │ ├──mp_rank_00_model_states_fp8_map.pt
│ │ │ ├──vae
│ │ │ │ ├──pytorch_model.pt
│ │ │ │ ├──config.json
│ │ ├──llava_llama_image
│ │ │ ├──model-00001-of-00004.safatensors
│ │ │ ├──model-00002-of-00004.safatensors
│ │ │ ├──model-00003-of-00004.safatensors
│ │ │ ├──model-00004-of-00004.safatensors
│ │ │ ├──...
│ │ ├──text_encoder_2
│ │ ├──whisper-tiny
│ │ ├──det_align
│ │ ├──...
Download HunyuanVideo-Avatar model
To download the HunyuanCustom model, first install the huggingface-cli. (Detailed instructions are available here.)
python -m pip install "huggingface_hub[cli]"
Then download the model using the following commands:
# Switch to the directory named 'HunyuanVideo-Avatar/weights'
cd HunyuanVideo-Avatar/weights
# Use the huggingface-cli tool to download HunyuanVideo-Avatar model in HunyuanVideo-Avatar/weights dir.
# The download time may vary from 10 minutes to 1 hour depending on network conditions.
huggingface-cli download tencent/HunyuanVideo-Avatar --local-dir ./
Requirements
- An NVIDIA GPU with CUDA support is required.
- The model is tested on a machine with 8GPUs.
- Minimum: The minimum GPU memory required is 24GB for 704px768px129f but very slow.
- Recommended: We recommend using a GPU with 96GB of memory for better generation quality.
- Tips: If OOM occurs when using GPU with 80GB of memory, try to reduce the image resolution.
- Tested operating system: Linux