ComfyUI Extension: Transparency Background Remover
Automatic background removal and transparency generation for ComfyUI
Custom Nodes (0)
README
ComfyUI-TransparencyBackgroundRemover
Intelligent Background Removal Node for ComfyUI
ComfyUI-TransparencyBackgroundRemover is a powerful custom node that automatically removes backgrounds from images using advanced AI-powered detection algorithms. Designed for seamless integration with ComfyUI workflows, this node excels at preserving fine edges and details while generating high-quality transparency masks.
✨ Key Features
- 🆕 Content-Aware Edge Detection - Automatically adapts processing for Pixel Art or Photographic images to achieve the best results.
- 🎯 Multi-Method Algorithm - Combines Roberts Cross, Sobel, and Canny edge detection for superior accuracy and detail preservation.
- 🖼️ Advanced Edge Refinement - Specialized algorithms for crisp, pixel-perfect boundaries in pixel art and smooth, clean edges in photos.
- 🔄 Batch Processing Support - Process multiple images efficiently in a single operation.
- 📐 Power-of-8 Scaling - Optimized scaling with NEAREST neighbor interpolation for pixel-perfect results.
- 🎨 Multiple Output Formats - RGBA with embedded alpha or RGB with separate mask.
- 🖥️ Dither Pattern Handling - Specialized processing for pixel art and dithered images.
- ⚙️ Highly Customizable - Fine-tune parameters for different image types and requirements.
📦 Installation
Method 1: ComfyUI Manager (Recommended)
- Open ComfyUI and navigate to Manager → Install via Git URL
- Enter the repository URL:
https://github.com/Limbicnation/ComfyUI-TransparencyBackgroundRemover
- Click Install and restart ComfyUI
- The node will appear under image/processing category
Method 2: Manual Installation
-
Clone the repository to your ComfyUI custom nodes directory:
cd ComfyUI/custom_nodes/ git clone https://github.com/Limbicnation/ComfyUI-TransparencyBackgroundRemover.git
-
Install dependencies:
cd ComfyUI-TransparencyBackgroundRemover pip install -r requirements.txt
-
Restart ComfyUI to load the new node
Required Dependencies
torch
- PyTorch for tensor operationsnumpy
- Numerical computingPillow
- Image processingopencv-python
- Computer vision operationsscikit-learn
- Machine learning algorithms for clustering
🎛️ Node Parameters
Core Processing Parameters
| Parameter | Type | Range | Default | Description | |-----------|------|-------|---------|-------------| | tolerance | INT | 0-255 | 30 | Color similarity threshold for background detection. Lower values = more selective background detection | | edge_sensitivity | FLOAT | 0.0-1.0 | 0.8 | Edge detection sensitivity. Higher values = more edge detail preservation | | foreground_bias | FLOAT | 0.0-1.0 | 0.7 | Bias towards preserving foreground elements. Higher values = stronger foreground protection | | color_clusters | INT | 2-20 | 8 | Number of color clusters for background analysis. More clusters = finer color distinction | | binary_threshold | INT | 0-255 | 128 | Threshold for generating binary alpha masks. Higher values = more opaque areas |
Output & Scaling Options
| Parameter | Type | Options | Default | Description | |-----------|------|---------|---------|-------------| | output_size | DROPDOWN | ORIGINAL, 64x64, 96x96, 128x128, 256x256, 512x512, 768x768, 1024x1024, 1280x1280, 1536x1536, 1792x1792, 2048x2048 | ORIGINAL | Target output dimensions (power-of-8 for optimal scaling) | | scaling_method | DROPDOWN | NEAREST | NEAREST | Interpolation method. NEAREST preserves pixel-perfect detail for pixel art | | output_format | DROPDOWN | RGBA, RGB_WITH_MASK | RGBA | Output format: RGBA (transparency embedded) or RGB with separate mask |
Advanced Options
| Parameter | Type | Options | Default | Description | |-----------|------|---------|---------|-------------| | edge_detection_mode | DROPDOWN | AUTO, PIXEL_ART, PHOTOGRAPHIC | AUTO | Selects the edge detection pipeline. AUTO intelligently detects content type. | | edge_refinement | BOOLEAN | | True | Apply post-processing edge refinement for smoother boundaries | | dither_handling | BOOLEAN | | True | Enable specialized processing for dithered patterns and pixel art | | batch_processing | BOOLEAN | | True | Process all images in batch (True) or only first image (False) |
🚀 Usage Examples
Basic Background Removal
- Load your image using any ComfyUI image loader node
- Connect the image output to the
image
input of the TransparencyBackgroundRemover node - Adjust parameters based on your image type:
- For most images: Leave
edge_detection_mode
onAUTO
. - For specific needs: Manually select
PIXEL_ART
orPHOTOGRAPHIC
to override the automatic detection.
- For most images: Leave
- Connect the outputs to preview or save nodes
Batch Processing Workflow
Load Images (Batch) → TransparencyBackgroundRemover → Save Images
↓
(Set batch_processing = True)
Pixel Art Optimization
Recommended settings for pixel art:
edge_detection_mode
:PIXEL_ART
(orAUTO
)tolerance
: 10-20edge_sensitivity
: 0.9-1.0color_clusters
: 4-8dither_handling
: Truescaling_method
: NEARESToutput_size
: Power-of-8 dimensions (256x256, 512x512, etc.)
High-Quality Photo Processing
Recommended settings for photographs:
edge_detection_mode
:PHOTOGRAPHIC
(orAUTO
)tolerance
: 25-40edge_sensitivity
: 0.7-0.8foreground_bias
: 0.8-0.9color_clusters
: 10-16edge_refinement
: True
📋 Workflow Integration
Example Workflow JSON
{
"nodes": [
{
"type": "LoadImage",
"pos": [100, 100]
},
{
"type": "TransparencyBackgroundRemover",
"pos": [400, 100],
"inputs": {
"edge_detection_mode": "AUTO",
"tolerance": 30,
"edge_sensitivity": 0.8,
"output_format": "RGBA"
}
},
{
"type": "PreviewImage",
"pos": [700, 100]
}
]
}
Node Connections
- Input: Connect any IMAGE output to the
image
input - Outputs:
image
→ Connect to preview, save, or further processing nodesmask
→ Use for compositing, masking, or additional processing
🎯 Auto GrabCut Background Remover
Overview
The Auto GrabCut Background Remover node provides advanced object detection and segmentation using YOLO and GrabCut algorithms. It can automatically detect objects in images and remove backgrounds with high precision, or refine existing masks for better quality.
Key Features
- Automatic Object Detection: Uses YOLO to identify objects (person, product, vehicle, animal, furniture, electronics)
- GrabCut Refinement: Advanced segmentation algorithm for precise edge detection
- Resize Functionality: Scale output to preset or custom dimensions
- Multiple Scaling Methods: NEAREST (pixel-perfect), BILINEAR, BICUBIC, LANCZOS
- Mask Refinement: Improve existing masks from other background removal tools
Node Parameters
Auto GrabCut Remover
| Parameter | Type | Range/Options | Default | Description | |-----------|------|---------------|---------|-------------| | object_class | DROPDOWN | auto, person, product, vehicle, animal, furniture, electronics | auto | Target object class for detection | | confidence_threshold | FLOAT | 0.3-0.9 | 0.5 | Minimum confidence for object detection | | grabcut_iterations | INT | 1-10 | 5 | Number of GrabCut algorithm iterations | | margin_pixels | INT | 0-50 | 20 | Pixel margin around detected object | | edge_refinement | FLOAT | 0.0-1.0 | 0.7 | Edge refinement strength (0=none, 1=maximum) | | edge_blur_amount | FLOAT | 0.0-10.0 | 0.0 | Amount of Gaussian blur applied to mask edges for softer transitions (0=sharp edges, 10=maximum smoothing) | | binary_threshold | INT | 128-250 | 200 | Threshold for binary mask conversion | | output_size | DROPDOWN | ORIGINAL, 512x512, 1024x1024, 2048x2048, custom | ORIGINAL | Target output dimensions | | scaling_method | DROPDOWN | NEAREST, BILINEAR, BICUBIC, LANCZOS | NEAREST | Interpolation method for scaling | | output_format | DROPDOWN | RGBA, MASK | RGBA | Output format type | | auto_adjust | BOOLEAN | True/False | False | Automatically adjust parameters based on image content analysis |
Optional Parameters
| Parameter | Type | Range | Default | Description | |-----------|------|-------|---------|-------------| | initial_mask | MASK | - | - | Initial mask from previous processing | | custom_width | INT | 64-4096 | 512 | Custom width (when output_size is 'custom') | | custom_height | INT | 64-4096 | 512 | Custom height (when output_size is 'custom') |
Usage Examples
Basic Object Removal
- Connect your image to the Auto GrabCut node
- Select the appropriate
object_class
(or leave as "auto") - Adjust
confidence_threshold
if needed - Choose your desired
output_size
andscaling_method
- Run the workflow
Mask Refinement
Use the GrabCut Refinement node to improve masks from other sources:
- Connect an image and its existing mask
- Adjust
grabcut_iterations
for refinement quality - Set
edge_refinement
for smoothing - Configure
edge_blur_amount
for desired edge softness:0.0
: Preserve existing sharp edges0.5-1.0
: Light feathering for natural blending1.5-3.0
: Soft edges for seamless compositing
- Apply resize options if needed
Edge Quality Control Examples
Sharp Pixel-Perfect Edges (ideal for pixel art, logos):
edge_blur_amount: 0.0
binary_threshold: 220-250
edge_refinement: 0.3-0.5
scaling_method: NEAREST
Natural Photo Edges (portraits, objects):
edge_blur_amount: 0.8-1.5
binary_threshold: 180-200
edge_refinement: 0.7-0.9
scaling_method: BILINEAR or BICUBIC
Soft Composite Blending (backgrounds, overlays):
edge_blur_amount: 2.0-5.0
binary_threshold: 160-180
edge_refinement: 0.8-1.0
scaling_method: BICUBIC or LANCZOS
Product Photography (clean commercial look):
edge_blur_amount: 0.3-0.8
binary_threshold: 200-230
edge_refinement: 0.6-0.8
object_class: "product"
🔧 Technical Details
Supported Image Formats
- Input: RGB/RGBA images as ComfyUI tensors
- Output: RGBA images with transparency or RGB + separate mask
- Batch Format: 4D tensors
[batch, height, width, channels]
Performance Considerations
- Memory Usage: ~2-4x input image size during processing
- Batch Processing: Processes images sequentially with progress indicators
- Minimum Size: 64x64 pixels required
- Recommended: Use power-of-8 dimensions for optimal scaling performance
Algorithm Overview
- Content-Aware Analysis: Detects if the image is pixel art or photographic to select the best pipeline.
- Multi-Method Edge Detection: Combines Roberts Cross, Sobel, and Canny algorithms for a robust edge map.
- Color Analysis: K-means clustering to identify dominant background colors.
- Edge Refinement: Applies specialized, content-aware filters to preserve sharp pixel art lines or create smooth photo edges.
- Alpha Generation: Creates a soft mask with configurable thresholds.
- Post-Processing: Optional dither handling and final enhancements.
Edge Blur Processing
The Auto GrabCut nodes include advanced edge blur functionality for creating soft mask transitions:
Edge Blur Algorithm
- Gaussian Blur Implementation: Uses OpenCV's GaussianBlur with dynamic kernel size calculation
- Kernel Size Formula:
kernel_size = int(edge_blur_amount * 2) * 2 + 1
(ensures odd kernel size) - Range Constraints: Kernel size is clamped between 3 and 21 pixels for optimal performance (effective max blur ~10.0)
- Adaptive Processing: blur_amount of 0.0 bypasses blur processing entirely for maximum performance
When to Use Edge Blur vs Binary Threshold
- Edge Blur (edge_blur_amount > 0.0): Creates soft, feathered edges ideal for natural blending
- Best for: Composite images, smooth transitions, photographic subjects
- Processing: Applies Gaussian blur to 0-255 mask values, preserves anti-aliasing
- Binary Threshold (edge_blur_amount = 0.0): Creates sharp, pixel-perfect edges
- Best for: Pixel art, technical illustrations, crisp masking requirements
- Processing: Applies binary threshold to eliminate semi-transparency
Performance Considerations
- Zero-Cost Bypass: When
edge_blur_amount = 0.0
, blur processing is completely skipped - Memory Usage: Edge blur processing requires temporary 8-bit mask conversion
- Quality vs Speed: Higher blur amounts (3.0+) provide smoother results but increase processing time
Auto-Parameter Adjustment
When auto_adjust
is enabled, the Auto GrabCut nodes intelligently analyze image characteristics and optimize parameters for best results:
Edge Blur Auto-Adjustment
The system automatically adjusts edge_blur_amount
based on image analysis:
-
High Edge Density Images (detailed textures, complex patterns):
- Increases blur by +0.5 from base value (max 3.0)
- Helps smooth out noise and create cleaner masks
-
Low Edge Density Images (simple shapes, solid colors):
- Decreases blur by -0.5 from base value (min 0.0)
- Preserves sharp edges for clean geometric shapes
-
High Noise Images (photographs with grain, artifacts):
- Increases blur by +0.25 from base value
- Reduces mask noise while maintaining edge quality
Auto-Adjustment Ranges
- edge_blur_amount: Adjusted within 0.0-3.0 range (safer than manual 5.0 maximum)
- Analysis-Based: Considers edge density, color variance, and noise characteristics
- Conservative Adjustments: Small incremental changes preserve user intent while optimizing quality
- First Image Only: In batch processing, analysis is performed on the first image and applied to all
🐛 Troubleshooting
Common Issues
"Input image must be at least 64x64 pixels"
- Ensure your input images meet the minimum size requirement
- Use an upscaling node if needed before processing
"Insufficient memory for processing"
- Reduce batch size or process images individually
- Set
batch_processing
to False for large images - Close other memory-intensive applications
Poor background detection
- Try switching the
edge_detection_mode
betweenPIXEL_ART
andPHOTOGRAPHIC
. - Adjust
tolerance
for similar colors. - Modify
color_clusters
(more clusters for complex backgrounds).
Jagged or blurry edges
- Ensure
edge_detection_mode
is set correctly (PIXEL_ART
for sharp edges,PHOTOGRAPHIC
for smooth). - Enable
edge_refinement
. - Adjust
edge_sensitivity
.
Edge quality issues with Auto GrabCut nodes
- Edges too sharp/harsh: Increase
edge_blur_amount
to 0.5-2.0 for softer transitions - Edges too soft/blurry: Decrease
edge_blur_amount
to 0.0-0.5, or set to 0.0 for pixel-perfect edges - Inconsistent edge quality: Balance
edge_refinement
andedge_blur_amount
- lower refinement when using higher blur amounts - Poor composite blending: Use
edge_blur_amount
1.5-5.0 withbinary_threshold
160-180 for seamless integration - Pixel art corruption: Set
edge_blur_amount
to 0.0 and usescaling_method
NEAREST to preserve crisp pixels - Processing too slow: High
edge_blur_amount
values (>5.0) increase processing time - use lower values when possible
🤝 Contributing
Contributions are welcome! Please feel free to submit issues, feature requests, or pull requests.
Development Setup
git clone https://github.com/Limbicnation/ComfyUI-TransparencyBackgroundRemover.git
cd ComfyUI-TransparencyBackgroundRemover
pip install -r requirements.txt
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- ComfyUI team for the excellent framework
- Community contributors and testers
- Built with ❤️ for the AI art community
📞 Support
- Issues: GitHub Issues
- Documentation: Project Wiki
- Discussions: GitHub Discussions