ComfyUI Extension: FM_nodes

Authored by FuouM

Created

Updated

4 stars

A collection of ComfyUI nodes. Including: WFEN, RealViFormer, ProPIH

Custom Nodes (0)

    README

    FM_nodes

    A collection of ComfyUI nodes.

    Click name to jump to workflow

    1. WFEN Face Restore. Paper: Efficient Face Super-Resolution via Wavelet-based Feature Enhancement Network
    2. RealViformer - Paper: Investigating Attention for Real-World Video Super-Resolution
    3. ProPIH. Paper: Progressive Painterly Image Harmonization from Low-level Styles to High-level Styles
    4. CoLIE. Paper: Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations
    5. VFIMamba. Paper: Video Frame Interpolation with State Space Models
    6. ConvIR. Paper: Revitalizing Convolutional Network for Image Restoration
    7. StabStitch. Paper: Eliminating Warping Shakes for Unsupervised Online Video Stitching

    Workflows

    WFEN

    Download the model here and place it in models/wfen/WFEN.pth.

    workflow_wfen_facecrop.json

    wfen_facecrop

    RealViformer

    Download the model here and place it in models/realviformer/weights.pth.

    workflow_realviformer.json

    realviformer_example

    (Not a workflow-embedded image)

    https://github.com/user-attachments/assets/e89003c0-7be5-4263-b281-fd609807cea1

    RealViFormer upscale example

    ProPIH

    Download the vgg_normalised.pth model in the Installation section and latest_net_G.pth in the Train/Test section

    models/propih/vgg_normalised.pth
    models/propih/latest_net_G.pth
    

    workflow_propih.json

    propih

    CoLIE

    No model needed to be downloaded. Lower loss_mean seems to result in brighter images. Node works with image and batched/video.

    workflow_colie_lowlight.json

    colie_lowlight

    VFIMamba

    Download the models from the huggingface page

    models/vfimamba/VFIMamba_S.pkl
    models/vfimamba/VFIMamba.pkl
    

    You will need to install mamba-ssm, which does not have a prebuilt Windows binary. You will need:

    1. triton. Prebuilt for Python 3.10 and 3.11 can be found here: https://github.com/triton-lang/triton/issues/2881 - https://huggingface.co/madbuda/triton-windows-builds/tree/main
    2. causal-conv1d. Follow this post: https://github.com/NVlabs/MambaVision/issues/14#issuecomment-2232581078
    3. mamba-ssm. Follow this tutorial: https://blog.csdn.net/yyywxk/article/details/140420538. Fork that followed all the steps: https://github.com/FuouM/mamba-windows-build

    I've built mamba-ssm for Python 3.11, torch 2.3.0+cu121, which can be obtained here: https://huggingface.co/FuouM/mamba-ssm-windows-builds/tree/main

    To install, pip install [].whl

    workflow_vfi_mamba.json

    example_vfi_mamba

    (Not a workflow-embedded image)

    https://github.com/user-attachments/assets/be263cc3-a104-4262-899b-242e9802719e

    VFIMamba Example (top: Original, bottom: 5X, 20FPS)

    ConvIR

    Download models in the Pretrained models - gdrive section

    workflow_convir.json

    convir

    models\convir
    │ deraining.pkl
    │
    ├─defocus
    │   dpdd-base.pkl
    │   dpdd-large.pkl
    │   dpdd-small.pkl
    │
    ├─dehaze
    │   densehaze-base.pkl
    │   densehaze-small.pkl
    │   gta5-base.pkl
    │   gta5-small.pkl
    │   haze4k-base.pkl
    │   haze4k-large.pkl
    │   haze4k-small.pkl
    │   ihaze-base.pkl
    │   ihaze-small.pkl
    │   its-base.pkl
    │   its-small.pkl
    │   nhhaze-base.pkl
    │   nhhaze-small.pkl
    │   nhr-base.pkl
    │   nhr-small.pkl
    │   ohaze-base.pkl
    │   ohaze-small.pkl
    │   ots-base.pkl
    │   ots-small.pkl
    │
    ├─desnow
    │   csd-base.pkl
    │   csd-small.pkl
    │   snow100k-base.pkl
    │   snow100k-small.pkl
    │   srrs-base.pkl
    │   srrs-small.pkl
    │
    └─modeblur
        convir_gopro.pkl
        convir_rsblur.pkl
    

    StabStitch

    Download all 3 models in the Code - Pre-trained model section.

    models/stabstitch/temporal_warp.pth
    models/stabstitch/spatial_warp.pth
    models/stabstitch/smooth_warp.pth
    

    Use interpolate_mode = NORMAL or do_linear_blend = True to eliminate dark borders. Inputs will be resized to 360x480. Recommends using StabStitch Crop Resize.

    | StabStitch | StabStitch Stabilize | |-|-| | stabstitch_stitch.json (Example videos in examples\stabstitch) | stabstich_stabilize.json | | example_stabstitch_stitch | example_stabstitch_stabilize |

    (Not workflow-embedded images)

    Credits

    @misc{chobola2024fast,
          title={Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations}, 
          author={Tomáš Chobola and Yu Liu and Hanyi Zhang and Julia A. Schnabel and Tingying Peng},
          year={2024},
          eprint={2407.12511},
          archivePrefix={arXiv},
          primaryClass={cs.CV},
          url={https://arxiv.org/abs/2407.12511}, 
    }
    
    @misc{zhang2024vfimambavideoframeinterpolation,
          title={VFIMamba: Video Frame Interpolation with State Space Models}, 
          author={Guozhen Zhang and Chunxu Liu and Yutao Cui and Xiaotong Zhao and Kai Ma and Limin Wang},
          year={2024},
          eprint={2407.02315},
          archivePrefix={arXiv},
          primaryClass={cs.CV},
          url={https://arxiv.org/abs/2407.02315}, 
    }
    
    @article{cui2024revitalizing,
      title={Revitalizing Convolutional Network for Image Restoration},
      author={Cui, Yuning and Ren, Wenqi and Cao, Xiaochun and Knoll, Alois},
      journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
      year={2024},
      publisher={IEEE}
    }
    
    @inproceedings{cui2023irnext,
      title={IRNeXt: Rethinking Convolutional Network Design for Image Restoration},
      author={Cui, Yuning and Ren, Wenqi and Yang, Sining and Cao, Xiaochun and Knoll, Alois},
      booktitle={International Conference on Machine Learning},
      pages={6545--6564},
      year={2023},
      organization={PMLR}
    }
    
    @article{nie2024eliminating,
      title={Eliminating Warping Shakes for Unsupervised Online Video Stitching},
      author={Nie, Lang and Lin, Chunyu and Liao, Kang and Zhang, Yun and Liu, Shuaicheng and Zhao, Yao},
      journal={arXiv preprint arXiv:2403.06378},
      year={2024}
    }