ComfyUI Node: Core ML Sampler (Advanced)

Authored by aszc-dev

Created

Updated

131 stars

Category

Core ML Suite

Inputs

coreml_model COREML_UNET
add_noise
  • enable
  • disable
noise_seed INT
steps INT
cfg FLOAT
sampler_name
  • euler
  • euler_ancestral
  • heun
  • heunpp2
  • dpm_2
  • dpm_2_ancestral
  • lms
  • dpm_fast
  • dpm_adaptive
  • dpmpp_2s_ancestral
  • dpmpp_sde
  • dpmpp_sde_gpu
  • dpmpp_2m
  • dpmpp_2m_sde
  • dpmpp_2m_sde_gpu
  • dpmpp_3m_sde
  • dpmpp_3m_sde_gpu
  • ddpm
  • lcm
  • ddim
  • uni_pc
  • uni_pc_bh2
scheduler
  • normal
  • karras
  • exponential
  • sgm_uniform
  • simple
  • ddim_uniform
positive CONDITIONING
start_at_step INT
end_at_step INT
return_with_leftover_noise
  • disable
  • enable
negative CONDITIONING
latent_image LATENT

Outputs

LATENT

Extension: Core ML Suite for ComfyUI

This extension contains a set of custom nodes for ComfyUI that allow you to use Core ML models in your ComfyUI workflows. The models can be obtained here, or you can convert your own models using coremltools. The main motivation behind using Core ML models in ComfyUI is to allow you to utilize the ANE (Apple Neural Engine) on Apple Silicon (M1/M2) machines to improve performance.

Authored by aszc-dev

Run ComfyUI workflows in the Cloud!

No downloads or installs are required. Pay only for active GPU usage, not idle time. No complex setups and dependency issues

Learn more