ComfyUI Extension: ComfyUI_UltraFlux

Authored by smthemex

Created

Updated

15 stars

UltraFlux:Data-Model Co-Design for High-quality Native 4K Text-to-Image Generation across Diverse Aspect Ratios,try it in comfyUI

Custom Nodes (0)

    README

    ComfyUI_UltraFlux

    UltraFlux:Data-Model Co-Design for High-quality Native 4K Text-to-Image Generation across Diverse Aspect Ratios,try it in comfyUI

    Update

    • 图生图模式上线,加噪伪超分 / i2i is done。
    • 因为基于flux ,如果出现人物,推荐使用修手lora,风格lora因为微调图片精度不够,可能会劣化输出,8G显存block number适当从10下调,4G显存,你就从1开始往上测试吧
    • Because based on flux, if a character appears, it is recommended to use a hand fix Lora. The style Lora may degrade the output due to insufficient fine-tuning of the image accuracy. The block number of 8GB VRAM should be appropriately reduced from 10, and 4G VRAM should be tested from 1 onwards

    1.Installation

    In the ./ComfyUI/custom_nodes directory, run the following:

    git clone https://github.com/smthemex/ComfyUI_UltraFlux
    
    

    2.requirements i

    • 不装也行,没什么需求
    pip install -r requirements.txt
    

    3.Model

    • gguf or transformer smthem/UltraFlux-v1-gguf optional/推荐用fp16 ,因为块卸载,只要内存大
    • vae rnamae it v1
    • diffusers transformer v1 or v1.1 optional/备选 填repo的方式,一般不用
    • comfyUI normal T5 and clip-l
    • lora, any turbo and style flux lora #任意flux加速和风格lora,部分Lora的精度不够 可能会劣化输出
    ├── ComfyUI/models/gguf # or transformer
    |     ├── UltraFlux-v1-1-BF16.gguf # or Q8
    ├── ComfyUI/models/diffusion_models # or gguf
    |     ├── UltraFlux-v1-1-BF16..safetensors # or e4m3fn
    ├── ComfyUI/models/vae
    |        ├─diffusion_pytorch_model.safetensors  # rename it 换个名字
    ├── ComfyUI/models/clip
    |        ├──t5xxl_fp8_e4m3fn.safetensors
    |        ├──clip_l.safetensors 
    ├── ComfyUI/models/loras 
    |        ├──any turbo lora
    |        ├──any style lora
    
    

    4.Example

    5.Citation

    @misc{ye2025ultrafluxdatamodelcodesignhighquality,
          title={UltraFlux: Data-Model Co-Design for High-quality Native 4K Text-to-Image Generation across Diverse Aspect Ratios}, 
          author={Tian Ye and Song Fei and Lei Zhu},
          year={2025},
          eprint={2511.18050},
          archivePrefix={arXiv},
          primaryClass={cs.CV},
          url={https://arxiv.org/abs/2511.18050}, 
    }