ComfyUI Extension: ComfyUI_LFM2-350M

Authored by marduk191

Created

Updated

0 stars

A custom node for ComfyUI to load and use the LFM2-350M model trained to work as a prompt enhancer for z-image turbo or any other long token model.

Custom Nodes (0)

    README

    ComfyUI LFM2-350M Node

    A custom node for ComfyUI to load and use my custom tuned LFM2-350M model trained on 60k base pairs to work as a prompt enhancer for z-image turbo or any other long token model.

    Features

    • Load from HuggingFace or a local path
    • Supports fine-tuned models saved with torch.compile() (automatically fixes _orig_mod. weight prefix)
    • Configurable generation parameters (temperature, top_p, top_k, min_p, repetition_penalty)
    • System prompt and user prompt inputs

    Installation

    1. Clone this repository into your ComfyUI custom_nodes folder:

      cd ComfyUI/custom_nodes
      git clone https://github.com/marduk191/ComfyUI_LFM2-350M.git
      
    2. Install dependencies:

      cd ComfyUI_LFM2-350M
      pip install -r requirements.txt
      
    3. Restart ComfyUI.

    Nodes

    LiquidAI LFM-2-350M Loader

    Loads the model and tokenizer.

    | Input | Description | |-------|-------------| | repo_id | HuggingFace repository ID (default: marduk191/lfm2-350m-dp-marduk191) | | local_path | Optional local path to a pre-downloaded/fine-tuned model | | precision | Model precision: bf16, fp16, fp32, or auto | | device | cuda or cpu |

    LiquidAI LFM-2-350M Generator

    Generates text based on prompts.

    | Input | Description | |-------|-------------| | model_context | Connect to Loader's model output | | tokenizer | Connect to Loader's tokenizer output | | system_prompt | System instructions for the model | | prompt | User input text | | max_new_tokens | Maximum tokens to generate (1-4096) | | temperature | Randomness control (default: 0.3) | | top_p | Nucleus sampling parameter | | top_k | K sampling parameter | | min_p | Minimum probability (default: 0.15) | | repetition_penalty | Penalty for repeating tokens (default: 1.05) |

    Recommended Parameters

    For best results with LFM2-350M:

    • temperature: 0.3
    • min_p: 0.15
    • repetition_penalty: 1.05

    Requirements

    • Python 3.10+
    • PyTorch 2.0+
    • Transformers 4.55+
    • CUDA GPU recommended

    Credits

    License

    MIT License