ComfyUI Extension: BSS WD14 Batch Tagger
Automatic image tagging using WD14 models with batch processing and GPU acceleration for ComfyUI
Custom Nodes (0)
README
BSS WD14 Batch Tagger
Automatic image tagging using WD14 models with batch processing for ComfyUI.
Features
- 4 WD14 v3 Models: ViT, SwinV2, EVA02, ConvNeXT
- Auto Download: Models download automatically from Hugging Face
- GPU Support: CUDA acceleration for faster processing
- Batch Processing: Process multiple images from folders
- Format Support: JPG, JPEG, PNG, WEBP
- Custom Tags: Add/remove tags as needed
Installation
Via ComfyUI Manager
- Open ComfyUI Manager
- Go to Registry tab
- Search for "BSS WD14 Batch Tagger"
- Click Install
- Restart ComfyUI
Manual Installation
cd ComfyUI/custom_nodes/
git clone https://github.com/BlackSnowSkill/wd14_batch_tagger.git
cd wd14_batch_tagger
pip install -r requirements.txt
Usage
Nodes
BSS Load Images from Folder 📂
- Loads images from a folder for batch processing
BSS WD14 Batch Tagger 🌿
- Tags images using WD14 models
- Saves tags to .txt files
Basic Workflow
- Use BSS Load Images from Folder to load your images
- Connect to BSS WD14 Batch Tagger for each image
- Set output folder for tag files
- Run the workflow
Settings
- Model: Choose WD14 model (auto-downloads if needed)
- Threshold: Tag confidence (0.35 default)
- GPU: Enable for faster processing
- Prepend/Exclude: Add custom tags or remove unwanted ones
Models
- WD ViT Tagger v3: Fast, good quality (default)
- WD SwinV2 Tagger v3: Balanced speed/quality
- WD EVA02 Large Tagger v3: Best accuracy
- WD ConvNeXT Tagger v3: Modern architecture
Models download automatically on first use.
Requirements
- Python 3.8+
- ComfyUI
- CUDA GPU (optional)
Support
License
MIT License - see LICENSE file for details.
Author: Blacksnowskill